skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moran, Mary_Ann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The remarkable pace of genomic data generation is rapidly transforming our understanding of life at the micron scale. Yet this data stream also creates challenges for team science. A single microbe can have multiple versions of genome architecture, functional gene annotations, and gene identifiers; additionally, the lack of mechanisms for collating and preserving advances in this knowledge raises barriers to community coalescence around shared datasets. “Digital Microbes” are frameworks for interoperable and reproducible collaborative science through open source, community-curated data packages built on a (pan)genomic foundation. Housed within an integrative software environment, Digital Microbes ensure real-time alignment of research efforts for collaborative teams and facilitate novel scientific insights as new layers of data are added. Here we describe two Digital Microbes: 1) the heterotrophic marine bacteriumRuegeria pomeroyiDSS-3 with > 100 transcriptomic datasets from lab and field studies, and 2) the pangenome of the cosmopolitan marine heterotrophAlteromonascontaining 339 genomes. Examples demonstrate how an integrated framework collating public (pan)genome-informed data can generate novel and reproducible findings. 
    more » « less
  2. We describe considerations and strategies for developing a nuclear magnetic resonance (NMR) sample preparation method to extract low molecular weight metabolites from high‐salt spent media in a model coculture system of phytoplankton and marine bacteria. Phytoplankton perform half the carbon fixation and oxygen generation on Earth. A substantial fraction of fixed carbon becomes part of a metabolite pool of small molecules known as dissolved organic matter (DOM), which are taken up by marine bacteria proximate to phytoplankton. There is an urgent need to elucidate these metabolic exchanges due to widespread anthropogenic transformations on the chemical, phenotypic, and species composition of seawater. These changes are increasing water temperature and the amount of CO2absorbed by the ocean at energetic costs to marine microorganisms. Little is known about the metabolite‐mediated, structured interactions occurring between phytoplankton and associated marine bacteria, in part because of challenges in studying high‐salt solutions on various analytical platforms. NMR analysis is problematic due to the high‐salt content of both natural seawater and culture media for marine microbes. High‐salt concentration degrades the performance of the radio frequency coil, reduces the efficiency of some pulse sequences, limits signal‐to‐noise, and prolongs experimental time. The method described herein can reproducibly extract low molecular weight DOM from small‐volume, high‐salt cultures. It is a promising tool for elucidating metabolic flux between marine microorganisms and facilitates genetic screens of mutant microorganisms. 
    more » « less
  3. Summary Dimethylsulfoniopropionate (DMSP) is an abundant organic sulfur metabolite produced by many phytoplankton species and degraded by bacteria via two distinct pathways with climate‐relevant implications. We assessed the diversity and abundance of bacteria possessing these pathways in the context of phytoplankton community composition over a 3‐week time period spanning September–October, 2014 in Monterey Bay, CA. ThedmdAgene from the DMSP demethylation pathway dominated the DMSP gene pool and was harboured mostly by members of the alphaproteobacterial SAR11 clade and secondarily by the Roseobacter group, particularly during the second half of the study. Novel members of the DMSP‐degrading community emerged fromdmdAsequences recovered from metagenome assemblies and single‐cell sequencing, including largely uncharacterized gammaproteobacteria and alphaproteobacteria taxa. In the DMSP cleavage pathway, the SAR11 genedddKwas the most abundant early in the study, but was supplanted bydddPover time. SAR11 members, especially those harbouring genes for both DMSP degradation pathways, had a strong positive relationship with the abundance of dinoflagellates, and DMSP‐degrading gammaproteobacteria co‐occurred with haptophytes. Thisin situstudy of the drivers of DMSP fate in a coastal ecosystem demonstrates for the first time correlations between specific groups of bacterial DMSP degraders and phytoplankton taxa. 
    more » « less